Logo des Repositoriums
 

Automation and its Effects on Mental Workload in Industrial Sectors

dc.contributor.authorStaab, Verena
dc.date.accessioned2024-08-21T11:08:42Z
dc.date.available2024-08-21T11:08:42Z
dc.date.issued2024
dc.description.abstractAutomation technology has profoundly transformed modern life, promising further evolution in safety and efficiency. However, it also fundamentally alters work dynamics, notably in the maritime sector where automation is increasingly prevalent. This dissertation investigates how automated systems impact mental workload and human-technology interactions in maritime contexts. By adapting a framework based on cognitive load theory, it analyzes predictors (e.g., automation, system design, level of autonomy, individual differences) of mental workload through systematic reviews and experimental studies. Key challenges include recruiting specialized maritime participants and deploying equipment in operational settings. By addressing these challenges, the dissertation aims to enhance understanding and implementation of automation, offering practical insights for optimizing human-technology interfaces in maritime automation.en
dc.identifier.doi10.18420/muc2024-mci-dc-281
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/44388
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofMensch und Computer 2024 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHuman-Machine Interaction
dc.subjectMental Workload
dc.subjectUser Experience
dc.subjectAutonomy
dc.subjectMaritime
dc.titleAutomation and its Effects on Mental Workload in Industrial Sectorsen
dc.typeText/Conference Paper
gi.conference.date1.-4. September 2024
gi.conference.locationKarlsruhe
gi.conference.sessiontitleMCI: Doctoral Consortium

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc2024-mci-dc-281.pdf
Größe:
735.05 KB
Format:
Adobe Portable Document Format