Logo des Repositoriums
 
Konferenzbeitrag

FAIR is not enough -- A Metrics Framework to ensure Data Quality through Data Preparation

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Data-driven systems and machine learning-based decisions are becoming increasingly important and are having an impact on our everyday lives. The prerequisite for this is good data quality, which must be ensured by preprocessing the data. For domain experts, however, the following difficulties arise: On the one hand, they have to choose from a multitude of different tools and algorithms. On the other hand, there is no uniform evaluation method for data quality. For this reason, we present the design of a framework of metrics that allows for a flexible evaluation of data quality and data preparation results.

Beschreibung

Restat, Valerie; Klettke, Meike; Störl, Uta (2023): FAIR is not enough -- A Metrics Framework to ensure Data Quality through Data Preparation. BTW 2023. DOI: 10.18420/BTW2023-61. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-725-8. pp. 917-929. Dresden, Germany. 06.-10. März 2023

Zitierform

Tags