Logo des Repositoriums
 

Towards a warning system for beekeepers: Detecting anomalous changes in sensor data from honey bee colonies

dc.contributor.authorSenger, Diren
dc.contributor.authorKluss, Thorsten
dc.contributor.authorFörster, Anna
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorKranzlmüller, Dieter
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2023-12-15T09:22:23Z
dc.date.available2023-12-15T09:22:23Z
dc.date.issued2023
dc.description.abstractBeekeepers in most parts of the world are challenged by colony losses induced by diseases, parasites, shortage of nectar and pollen, and various other causes. For a better understanding of these causes and to inform beekeepers when to intervene and to perform certain beekeeping activities to protect their colonies, monitoring systems using sensor technology in the hives can be implemented. Currently, most monitoring systems available at the market provide a visualisation of the measured sensor values, but do no integrate further analysis or an interpretation of the values, e.g. by time series classification or by comparing to time series prediction data. We describe a system architecture where predictions made for a specific colony can be used to find aberrations, potentially indicating an anomalous development of the bee colony. We summarise challenges of such an implementation and evaluate the system using data from a German Citizen Science Project, consisting of temperature, humidity and weight measurements and a log of all activities and observations made by the beekeepers in a web app.en
dc.identifier.doi10.18420/env2023-001
dc.identifier.isbn978-3-88579-736-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43329
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-342
dc.subjectsensor nodes
dc.subjectpredictive models
dc.subjectIoT
dc.subjectagriculture
dc.subjectenvironmental modelling
dc.titleTowards a warning system for beekeepers: Detecting anomalous changes in sensor data from honey bee coloniesen
dc.typeText/Conference Paper
gi.citation.endPage24
gi.citation.publisherPlaceBonn
gi.citation.startPage15
gi.conference.date11.-13. Oktober 2023
gi.conference.locationGarching, Germany
gi.conference.reviewfull
gi.conference.sessiontitleEnvironmentalMonitoringandSensingTechnologies

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI_Proceedings_342_Digital_Paper_1.pdf
Größe:
383.63 KB
Format:
Adobe Portable Document Format