Logo des Repositoriums
 

A Decision Tree Approach for the Classification of Mistakes of Students Learning SQL, a case study about SELECT statements

dc.contributor.authorFaeskorn-Woyke, Heide
dc.contributor.authorBertelsmeier, Birgit
dc.contributor.authorStrohschein, Jan
dc.contributor.editorZender, Raphael
dc.contributor.editorIfenthaler, Dirk
dc.contributor.editorLeonhardt, Thiemo
dc.contributor.editorSchumacher, Clara
dc.date.accessioned2020-09-08T09:46:20Z
dc.date.available2020-09-08T09:46:20Z
dc.date.issued2020
dc.description.abstractTH Köln provides a web-based e-learning platform edb4, where novices can do their first steps in SQL. The goal of this paper is to build a decision tree (manually) that classifies the novice's errors. To do so we logged data containing tasks, solutions, and wrong statements over seven months and got a table with 7533 rows as a training set. Each leaf node of the decision tree is a class of errors of similar type and generates an error message with feedback to help the user to solve the task. Interesting and surprising are the mistakes that SQL novices make. The result improves the first steps of learning SQL in a simple and personalized way and gives the teachers hints to improve their learning outputs.en
dc.identifier.isbn978-3-88579-702-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34162
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V.
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-308
dc.subjectDatabases
dc.subjectSQL
dc.subjectweb-based learning
dc.subjecte-learning
dc.subjecteducational data mining
dc.subjectlearning analytics
dc.subjectdecision trees
dc.titleA Decision Tree Approach for the Classification of Mistakes of Students Learning SQL, a case study about SELECT statementsen
dc.typeText/Conference Paper
gi.citation.endPage216
gi.citation.publisherPlaceBonn
gi.citation.startPage211
gi.conference.date14.-18. September 2020
gi.conference.locationOnline

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
211 DELFI2020_paper_24.pdf
Größe:
236.89 KB
Format:
Adobe Portable Document Format