Logo des Repositoriums
 

Data-driven analysis and prediction of norm acceptance

dc.contributor.authorKrestel, Ralf
dc.contributor.authorKuhn, Annegret
dc.contributor.authorHasselbring, Wilhelm
dc.date.accessioned2022-09-09T12:40:19Z
dc.date.available2022-09-09T12:40:19Z
dc.date.issued2022
dc.description.abstractThat norms matter for politics is a widely shared observation. Existing political science research on norm diffusion, norm localization, and contestations is, however, constrained due to methodological manageability of empirical data. To face this research challenge, we propose an interdisciplinary research collaboration between political and computer science. Using the show case of energy politics, we want to conduct unsupervised and semi-supervised content analysis and fusion with the help of automated text mining methods to analyze the influence of different types of so-called norm entrepreneurs on the public acceptance and, respectively, contestations of different energy policies.de
dc.identifier.doi10.1007/s00287-022-01472-1
dc.identifier.pissn1432-122X
dc.identifier.urihttp://dx.doi.org/10.1007/s00287-022-01472-1
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39368
dc.publisherSpringer
dc.relation.ispartofInformatik Spektrum: Vol. 45, No. 4
dc.relation.ispartofseriesInformatik Spektrum
dc.titleData-driven analysis and prediction of norm acceptancede
dc.typeText/Journal Article
gi.citation.endPage245
gi.citation.startPage240

Dateien