Logo des Repositoriums
 
Konferenzbeitrag

An overview on querying and learning in temporal probabilistic databases

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Probabilistic databases store, query and manage large amounts of uncertain information in an efficient way. This paper summarizes my thesis which advances the state-of-the-art in probabilistic databases in three different ways: First, we present a closed and complete data model for temporal probabilistic databases. Queries are posed via temporal deduction rules which induce lineage formulas capturing both time and uncertainty. Second, we devise a methodology for computing the top-k most probable query answers. It is based on first-order lineage formulas representing sets of answer candidates. Moreover, we derive probability bounds on these formulas which enable pruning low-probability answers. Third, we introduce the problem of learning tuple probabilities, which allows updating and cleaning of probabilistic databases, and study its complexity and characterize its solutions.

Beschreibung

Dylla, Maximilian (2015): An overview on querying and learning in temporal probabilistic databases. Datenbanksysteme für Business, Technologie und Web (BTW 2015). Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-635-0. pp. 493-502. Hamburg. 2.-3. März 2015

Schlagwörter

Zitierform

DOI

Tags