Logo des Repositoriums
 

An overview on querying and learning in temporal probabilistic databases

dc.contributor.authorDylla, Maximilian
dc.contributor.editorSeidl, Thomas
dc.contributor.editorRitter, Norbert
dc.contributor.editorSchöning, Harald
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHärder, Theo
dc.contributor.editorFriedrich, Steffen
dc.contributor.editorWingerath, Wolfram
dc.date.accessioned2017-06-30T11:40:47Z
dc.date.available2017-06-30T11:40:47Z
dc.date.issued2015
dc.description.abstractProbabilistic databases store, query and manage large amounts of uncertain information in an efficient way. This paper summarizes my thesis which advances the state-of-the-art in probabilistic databases in three different ways: First, we present a closed and complete data model for temporal probabilistic databases. Queries are posed via temporal deduction rules which induce lineage formulas capturing both time and uncertainty. Second, we devise a methodology for computing the top-k most probable query answers. It is based on first-order lineage formulas representing sets of answer candidates. Moreover, we derive probability bounds on these formulas which enable pruning low-probability answers. Third, we introduce the problem of learning tuple probabilities, which allows updating and cleaning of probabilistic databases, and study its complexity and characterize its solutions.en
dc.identifier.isbn978-3-88579-635-0
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2015)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-241
dc.titleAn overview on querying and learning in temporal probabilistic databasesen
dc.typeText/Conference Paper
gi.citation.endPage502
gi.citation.publisherPlaceBonn
gi.citation.startPage493
gi.conference.date2.-3. März 2015
gi.conference.locationHamburg

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
493.pdf
Größe:
341.99 KB
Format:
Adobe Portable Document Format