Logo des Repositoriums
 

Connecting the Hamiltonian structure to the QAOA performance and energy landscape

dc.contributor.authorMüssig, Daniel
dc.contributor.authorWappler, Markus
dc.contributor.authorLenk, Steve
dc.contributor.authorLässig, Jörg
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:27Z
dc.date.available2024-10-21T18:24:27Z
dc.date.issued2024
dc.description.abstractQuantum computing holds promise for outperforming classical computing in specialized applications such as optimization. With current Noisy Intermediate Scale Quantum (NISQ) devices, only variational quantum algorithms like the Quantum Alternating Operator Ansatz (QAOA) can be practically run. QAOA is effective for solving Quadratic Unconstrained Binary Optimization (QUBO) problems by approximating Quantum Annealing via Trotterization. Successful implementation on NISQ devices requires shallow circuits, influenced by the number of variables and the sparsity of the augmented interaction matrix. This paper investigates the necessary sparsity levels for augmented interaction matrices to ensure solvability with QAOA. By analyzing the Max-Cut problem with varying sparsity, we provide insights into how the Hamiltonian density affects the QAOA performance. Our findings highlight that, while denser matrices complicate the energy landscape, the performance of QAOA remains largely unaffected by sparsity variations. This study emphasizes the algorithm’s robustness and potential for optimization tasks on near-term quantum devices, suggesting avenues for future research in enhancing QAOA for practical applications.en
dc.identifier.doi10.18420/inf2024_48
dc.identifier.isbn978-3-88579-746-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45208
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectQuantum Computing
dc.subjectQAOA
dc.subjectMax-Cut
dc.subjectSparsity
dc.subjectIsing Hamiltonian
dc.titleConnecting the Hamiltonian structure to the QAOA performance and energy landscapeen
dc.typeText/Conference Paper
gi.citation.endPage604
gi.citation.publisherPlaceBonn
gi.citation.startPage595
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleGI Quantum Computing Workshop

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Muessig_et_al_Connectin_ the_Hamiltonian_structure.pdf
Größe:
900.97 KB
Format:
Adobe Portable Document Format