Logo des Repositoriums
 

Make Me Laugh: Recommending Humoristic Content on the WWW

dc.contributor.authorBuschek, Danielde_DE
dc.contributor.authorJust, Ingode_DE
dc.contributor.authorFritzsche, Benjaminde_DE
dc.contributor.authorAlt, Floriande_DE
dc.contributor.editorDiefenbach, Sarahde_DE
dc.contributor.editorHenze, Nielsde_DE
dc.contributor.editorPielot, Martinde_DE
dc.date.accessioned2017-11-22T15:02:29Z
dc.date.available2017-11-22T15:02:29Z
dc.date.issued2015
dc.description.abstractHumoristic content is an inherent part of the World Wide Web and increasingly consumed for micro-entertainment. However, humor is often highly individual and depends on background knowledge and context. This paper presents an approach to recommend humoristic content fitting each individual user's taste and interests. In a field study with 150 participants over four weeks, users rated content with a 0-10 scale on a humor website. Based on this data, we train and apply a Collaborative Filtering (CF) algorithm to assess individual humor and recommend fitting content. Our study shows that users rate recommended content 22.6% higher than randomly chosen content.de_DE
dc.identifier.isbn978-3-11-044392-9de_DE
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/7901
dc.publisherDe Gruyter Oldenbourgde_DE
dc.relation.ispartofMensch und Computer 2015 – Proceedingsde_DE
dc.relation.ispartofseriesMensch & Computerde_DE
dc.subjectHumorde_DE
dc.subjectRecommender Systemsde_DE
dc.subjectWorld Wide Webde_DE
dc.titleMake Me Laugh: Recommending Humoristic Content on the WWWde_DE
dc.typeText/Conference Paperde_DE
gi.citation.endPage201
gi.citation.publisherPlaceBerlinde_DE
gi.citation.startPage193de_DE
gi.conference.sessiontitleInteraktive Anwendungende_DE
gi.document.qualitydigidocde_DE

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Buschek_etal_2015.pdf
Größe:
1.61 MB
Format:
Adobe Portable Document Format