A Neural Natural Language Processing System for Educational Resource Knowledge Domain Classification
dc.contributor.author | Schrumpf, Johannes | |
dc.contributor.author | Weber, Felix | |
dc.contributor.author | Thelen, Tobias | |
dc.contributor.editor | Kienle, Andrea | |
dc.contributor.editor | Harrer, Andreas | |
dc.contributor.editor | Haake, Joerg M. | |
dc.contributor.editor | Lingnau, Andreas | |
dc.date.accessioned | 2021-08-25T08:21:52Z | |
dc.date.available | 2021-08-25T08:21:52Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In higher education, educational resources are the vessel with which information get transferred to the learner. Information on the content discussed in the scope of the educational resources, however, is implicit and must be inferred by the user by reading the resource title or through contextual information. In this paper we present a state-of-the-art neural natural language processing system, based on Google-BERT, that maps educational resource titles into one of 905 classes from the Dewey Decimal Classification (DDC) system. We present model architecture, training procedure dataset properties and our performance analysis methodology. We show that aside from classification performance, our model implicitly learns the class hierarchy inherent to the DDC. | en |
dc.identifier.isbn | 978-3-88579-710-4 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/37023 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | DELFI 2021 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-316 | |
dc.subject | Machine Learning | |
dc.subject | AI in Higher Education | |
dc.subject | Recommender Systems | |
dc.title | A Neural Natural Language Processing System for Educational Resource Knowledge Domain Classification | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 288 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 283 | |
gi.conference.date | 13.-15. September 2021 | |
gi.conference.location | Online | |
gi.conference.sessiontitle | Lernressourcen |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- DELFI_2021_283-288.pdf
- Größe:
- 189.48 KB
- Format:
- Adobe Portable Document Format