Konferenzbeitrag

Supervised posteriors for DNA-motif classification

Lade...
Vorschaubild
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2007
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
German conference on bioinformatics – GCB 2007
Regular Research Papers
Verlag
Gesellschaft für Informatik e. V.
Zusammenfassung
Markov models have been proposed for the classification of DNA-motifs using generative approaches for parameter learning. Here, we propose to apply the discriminative paradigm for this problem and study two different priors to facilitate parameter estimation using the maximum supervised posterior. Considering seven sets of eukaryotic transcription factor binding sites we find this approach to be superior employing area under the ROC curve and false positive rate as performance criterion, and better in general using sensitivity. In addition, we discuss potential reasons for the improved performance.
Beschreibung
Grau, Jan; Keilwagen, Jens; Kel, Alexander; Grosse, Ivo; Posch, Stefan (2007): Supervised posteriors for DNA-motif classification. German conference on bioinformatics – GCB 2007. Bonn: Gesellschaft für Informatik e. V.. PISSN: 1617-5468. ISBN: 978-3-88579-209-3. pp. 123-134. Regular Research Papers. Potsdam. September 26-28, 2007, Potsdam,
Schlagwörter
Zitierform
DOI
Tags