Logo des Repositoriums
 

AppMining

dc.contributor.authorAvdiienko, Vitalii
dc.contributor.authorKuznetsov, Konstantin
dc.contributor.authorGorla, Alessandra
dc.contributor.authorZeller, Andreas
dc.contributor.authorArzt, 
Steven
dc.contributor.authorRasthofer, Siegfried
dc.contributor.authorBodden, Eric
dc.contributor.editorJürjens, Jan
dc.contributor.editorSchneider, Kurt
dc.date.accessioned2017-06-21T19:18:09Z
dc.date.available2017-06-21T19:18:09Z
dc.date.issued2017
dc.description.abstractA fundamental question of security analysis is: When is a behavior normal, and when is it not? We present techniques that extract behavior patterns from thousands of apps—patters that represent normal behavior, such as “A travel app normally does not access stored text messages”. Combining data flow analysis with app descriptions and GUI data from both apps and their stores allows for massive machine learning, which then also allows to detect yet unknown malware by classifying it as abnormal.en
dc.identifier.isbn978-3-88579-661-9
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-267
dc.titleAppMiningen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.citation.startPage113
gi.conference.date21.-24. Februar 2017
gi.conference.locationHannover
gi.conference.sessiontitleSecurity & Privacy

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper44.pdf
Größe:
324.6 KB
Format:
Adobe Portable Document Format