Logo des Repositoriums
 

Comparing Link Grammars and Dependency Grammars for parsing German histological reports

dc.contributor.authorDörenberg, Julian
dc.contributor.editorGesellschaft für Informatik e.V.
dc.date.accessioned2023-02-21T09:39:18Z
dc.date.available2023-02-21T09:39:18Z
dc.date.issued2022
dc.description.abstractThe availability of structured data is becoming an increasingly critical factor in medical research. Still, pathologists in Germany document their findings in running text instead of in a structured form. In order to obtain structured data from these report texts, hey have to be converted to a more useful form. Link Grammars (LGs) and Dependency Grammars (DGs) both can be used to parse the texts. Hence, LGs and DGs can be used for information extraction on histological reports. This paper aims to compare LGs and DGs, to show why DGs are superior and to evaluate the performance of a DG parser on a corpus of 200 histological reports randomly selected from breast biopsy reports. The DG parser achieved an Unlabelled Attachment Score of 96, a Labelled Accuracy of 95 and a Labelled Attachment Score of 93. Further evaluation shows that the occurrence of medical words which have not been part of the training data does not affect the parsers performance.en
dc.identifier.isbn978-3-88579-752-4
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40234
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofSKILL 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-18
dc.subjectNatural Language Processing
dc.subjectText-Mining
dc.subjectAI
dc.subjectMachine Learning
dc.subjectDependency Grammars
dc.subjectLink Grammars
dc.subjectMedical Informatics
dc.titleComparing Link Grammars and Dependency Grammars for parsing German histological reportsen
gi.citation.endPage163
gi.citation.startPage153
gi.conference.date29.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleNatural Language Processing

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A5-2.pdf
Größe:
220.34 KB
Format:
Adobe Portable Document Format