Logo des Repositoriums
 
Textdokument

Recovering information from pixelized credentials

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Pixelation is a common technique to redact sensitive information like credentials in images. In this paper, we propose a system that is able to recover information from pixelized text. Our contribution consists of a neural network as well as a generic pipeline that generates a realistic training dataset considering flexible specifications including wordlists, fonts, font sizes and letter spacings. The contributed neural network is a composition of a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM) and a Connectionist Temporal Classification (CTC) layer to decode sequences of characters. With our approach, we achieve a Label Error Rate (LER) under 50% when taking pixelation block sizes of up to 8 × 8 pixels on a 22pt font into account. Thereby, our results indicate that pixelation of sensitive data does not satisfy common privacy standards.

Beschreibung

Garske, Viktor; Noack, Andreas (2022): Recovering information from pixelized credentials. GI SICHERHEIT 2022. DOI: 10.18420/sicherheit2022_08. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-717-3. pp. 129-141. Session 3. Karlsruhe. 5.-8. April 2022

Zitierform

Tags