Logo des Repositoriums
 

Recovering information from pixelized credentials

dc.contributor.authorGarske, Viktor
dc.contributor.authorNoack, Andreas
dc.contributor.editorChristian Wressnegger, Delphine Reinhardt
dc.date.accessioned2023-01-24T11:17:53Z
dc.date.available2023-01-24T11:17:53Z
dc.date.issued2022
dc.description.abstractPixelation is a common technique to redact sensitive information like credentials in images. In this paper, we propose a system that is able to recover information from pixelized text. Our contribution consists of a neural network as well as a generic pipeline that generates a realistic training dataset considering flexible specifications including wordlists, fonts, font sizes and letter spacings. The contributed neural network is a composition of a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM) and a Connectionist Temporal Classification (CTC) layer to decode sequences of characters. With our approach, we achieve a Label Error Rate (LER) under 50% when taking pixelation block sizes of up to 8 × 8 pixels on a 22pt font into account. Thereby, our results indicate that pixelation of sensitive data does not satisfy common privacy standards.en
dc.identifier.doi10.18420/sicherheit2022_08
dc.identifier.isbn978-3-88579-717-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40150
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofGI SICHERHEIT 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-323
dc.subjectNeural networks
dc.subjectprivacy
dc.subjectmachine learning
dc.subjectcomputer vision
dc.subjectpassword
dc.subjectcredentials
dc.subjectpixelized
dc.titleRecovering information from pixelized credentialsen
gi.citation.endPage141
gi.citation.startPage129
gi.conference.date5.-8. April 2022
gi.conference.locationKarlsruhe
gi.conference.sessiontitleSession 3

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B3-1.pdf
Größe:
799.83 KB
Format:
Adobe Portable Document Format