Logo des Repositoriums
 
Konferenzbeitrag

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

For domains with high data privacy and protection demands, such as health care and finance, outsourcing machine learning tasks often requires additional security measures. Trusted Execution Environments like Intel SGX are a powerful tool to achieve this additional security. Until recently, Intel SGX incurred high performance costs, mainly because it was severely limited in terms of available memory and CPUs. With the second generation of SGX, Intel alleviates these problems. Therefore, we revisit previous use cases for ML secured by SGX and show initial results of a performance study for ML workloads on SGXv2.

Beschreibung

Lutsch, Adrian; Singh, Gagandeep; Mundt, Martin; Mogk, Ragnar; Binnig, Carsten (2023): Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads. BTW 2023. DOI: 10.18420/BTW2023-44. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-725-8. pp. 711-717. Dresden, Germany. 06.-10. März 2023

Zitierform

Tags