Logo des Repositoriums
 

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads

dc.contributor.authorLutsch, Adrian
dc.contributor.authorSingh, Gagandeep
dc.contributor.authorMundt, Martin
dc.contributor.authorMogk, Ragnar
dc.contributor.authorBinnig, Carsten
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T14:00:01Z
dc.date.available2023-02-23T14:00:01Z
dc.date.issued2023
dc.description.abstractFor domains with high data privacy and protection demands, such as health care and finance, outsourcing machine learning tasks often requires additional security measures. Trusted Execution Environments like Intel SGX are a powerful tool to achieve this additional security. Until recently, Intel SGX incurred high performance costs, mainly because it was severely limited in terms of available memory and CPUs. With the second generation of SGX, Intel alleviates these problems. Therefore, we revisit previous use cases for ML secured by SGX and show initial results of a performance study for ML workloads on SGXv2.en
dc.identifier.doi10.18420/BTW2023-44
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40351
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectTrusted Execution Environments
dc.subjectIntel SGX
dc.subjectMachine Learning
dc.subjectBenchmarking
dc.titleBenchmarking the Second Generation of Intel SGX for Machine Learning Workloadsen
dc.typeText/Conference Paper
gi.citation.endPage717
gi.citation.publisherPlaceBonn
gi.citation.startPage711
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C1-1.pdf
Größe:
206.27 KB
Format:
Adobe Portable Document Format