Logo des Repositoriums
 
Konferenzbeitrag

Support vector machine parameter optimization for text categorization problems

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2003

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This paper analyzes the influence of different parameters of Support Vector Machine (SVM) on text categorization performance. The research is carried out on different text collections and different subject headings (up to 1168 items). We show that parameter optimization can essentially increase text categorization performance. An estimation of range for searching optimal parameter is given. We describe an algorithm to find optimal parameters. We introduce the notion of stability of classification algorithm and analyze the stability of SVM, depending on number of documents in the example set. We suggest some practical recommendations for applying SVM to real-world text categorization problems.

Beschreibung

Ageev, Mikhail S.; Dobrov, Boris V. (2003): Support vector machine parameter optimization for text categorization problems. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 3-88579-359-8. pp. 165-176. Regular Research Papers. Kharkiv, Ukraine. June 19-21, 2003

Schlagwörter

Zitierform

DOI

Tags