Logo des Repositoriums
 

Support vector machine parameter optimization for text categorization problems

dc.contributor.authorAgeev, Mikhail S.
dc.contributor.authorDobrov, Boris V.
dc.contributor.editorGodlevsky, Mikhail
dc.contributor.editorLiddle, Stephen W.
dc.contributor.editorMayr, Heinrich C.
dc.date.accessioned2019-11-14T11:18:10Z
dc.date.available2019-11-14T11:18:10Z
dc.date.issued2003
dc.description.abstractThis paper analyzes the influence of different parameters of Support Vector Machine (SVM) on text categorization performance. The research is carried out on different text collections and different subject headings (up to 1168 items). We show that parameter optimization can essentially increase text categorization performance. An estimation of range for searching optimal parameter is given. We describe an algorithm to find optimal parameters. We introduce the notion of stability of classification algorithm and analyze the stability of SVM, depending on number of documents in the example set. We suggest some practical recommendations for applying SVM to real-world text categorization problems.en
dc.identifier.isbn3-88579-359-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/29867
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-30
dc.titleSupport vector machine parameter optimization for text categorization problemsen
dc.typeText/Conference Paper
gi.citation.endPage176
gi.citation.publisherPlaceBonn
gi.citation.startPage165
gi.conference.dateJune 19-21, 2003
gi.conference.locationKharkiv, Ukraine
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.30-15.pdf
Größe:
259.69 KB
Format:
Adobe Portable Document Format