Logo des Repositoriums
 

Using neutral networks for waste-water purification

dc.contributor.authorVenema, R. S.
dc.contributor.authorBron, J.
dc.contributor.authorZijlstra, R.M.
dc.contributor.authorNijhuis, J. A. G.
dc.contributor.authorSpaanenburg, L.
dc.contributor.editorHaasis, H.-D.
dc.contributor.editorRanze, K.C.
dc.date.accessioned2019-09-16T09:30:52Z
dc.date.available2019-09-16T09:30:52Z
dc.date.issued1998
dc.description.abstractOne of the main issues in the research into a time series is its prediction. Artificial neural networks are suitable for that purpose because of their ability to identify non-linear systems. We illustrate the use of neural networks by a forecasting problem in waste-water purification, namely the prediction of its ammonia concentration. For this application, we used a feedforward architecture with an input delay line. However, because of the multi-variate, multi-scale and multi-stationary properties of the problem, we propose to put modularity in the neural design to capture these dynamics.de
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/26510
dc.publisherMetropolis
dc.relation.ispartofUmweltinformatik ’98 - Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft - Computer Science for Environmental Protection ’98 - Networked Structures in Information Technology, the Environment and Business
dc.relation.ispartofseriesEnviroInfo
dc.titleUsing neutral networks for waste-water purificationde
dc.typeText/Conference Paper
gi.citation.publisherPlaceMarburg
gi.conference.date1998
gi.conference.locationBremen
gi.conference.sessiontitleWissensverarbeitung in Umweltanwendungen, Knowledge Processing for Environmental Applications

Dateien