PhenoTruckAI: On-Site Hyperspectral Measurement for Distinction of Quarantine Grapevine Disease “flavescence dorée” and non-Quarantine Disease “bois noir” in a Mobile Laboratory
dc.contributor.author | Thielert, Bonito | |
dc.contributor.author | Menz, Patrick | |
dc.contributor.author | Götte, Gesa | |
dc.contributor.author | Runne, Miriam | |
dc.contributor.author | Michel, Markus | |
dc.contributor.author | Wagner, Sylvia | |
dc.contributor.author | Jarausch, Wolfgang | |
dc.contributor.author | Warnemünde, Sebastian | |
dc.contributor.editor | Klein, Maike | |
dc.contributor.editor | Krupka, Daniel | |
dc.contributor.editor | Winter, Cornelia | |
dc.contributor.editor | Gergeleit, Martin | |
dc.contributor.editor | Martin, Ludger | |
dc.date.accessioned | 2024-10-21T18:24:12Z | |
dc.date.available | 2024-10-21T18:24:12Z | |
dc.date.issued | 2024 | |
dc.description.abstract | German wine growing regions are threatened by the expected occurrence of the quarantine phytoplasma disease “flavescence dorée (FD)”. As a fast and reliable extension for FD monitoring in the field, hyperspectral imaging using machine learning (ML) based data processing has been assessed for its potential to detect FD and to distinguish it from the less damaging phytoplasma disease “bois noir (BN)”. As FD is not yet present in Germany, the study has been conducted in Northern Italy in a mobile lab. The best models reached a high phytoplasma detection accuracy of 94.9% and 97.8% for the visible to near-infrared (VNIR) and the short-wavelength spectral range (SWIR), respectively. The distinction accuracy to BN reached 79.9% (VNIR) and 79.3% (SWIR). Both, the practicability performing hyperspectral measurements in a sovereign mobile lab and the applicability of hyperspectral sensor systems using ML for detection and distinction of FD and BN phytoplasmas has been shown. | en |
dc.identifier.doi | 10.18420/inf2024_110 | |
dc.identifier.isbn | 978-3-88579-746-3 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/45082 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2024 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-352 | |
dc.subject | hyperspectral | |
dc.subject | mobile laboratory | |
dc.subject | phytoplasma | |
dc.subject | flavescence dorée | |
dc.subject | machine learning | |
dc.subject | vine | |
dc.subject | bois noir | |
dc.subject | disease detection | |
dc.title | PhenoTruckAI: On-Site Hyperspectral Measurement for Distinction of Quarantine Grapevine Disease “flavescence dorée” and non-Quarantine Disease “bois noir” in a Mobile Laboratory | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 1260 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 1253 | |
gi.conference.date | 24.-26. September 2024 | |
gi.conference.location | Wiesbaden | |
gi.conference.sessiontitle | KoLaZ-24-Kolloquium Landwirtschaft der Zukunft 2024: Digitale Souveränität in der Landwirtschaft, der Lebensmittelkette und dem ländlichen Raum: Trotz, mit oder durch KI? |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Thielert_et_al_PhenoTruckAI.pdf
- Größe:
- 2.55 MB
- Format:
- Adobe Portable Document Format