Logo des Repositoriums
 

Acoustic Event Classification Using Convolutional Neural Networks

dc.contributor.authorKahl, Stefan
dc.contributor.authorHussein, Hussein
dc.contributor.authorFabian, Etienne
dc.contributor.authorSchloßhauer, Jan
dc.contributor.authorThangaraju, Enniyan
dc.contributor.authorKowerko, Danny
dc.contributor.authorEibl, Maximilian
dc.contributor.editorEibl, Maximilian
dc.contributor.editorGaedke, Martin
dc.date.accessioned2017-08-28T23:47:40Z
dc.date.available2017-08-28T23:47:40Z
dc.date.issued2017
dc.description.abstractThe classification of human-made acoustic events is important for the monitoring and recognition of human activities or critical behavior. In our experiments on acoustic event classification for the utilization in the sector of health care, we defined different acoustic events which represent critical events for elderly or people with disabilities in ambient assisted living environments or patients in hospitals. This contribution presents our work for acoustic event classification using deep learning techniques. We implemented and trained various convolutional neural networks for the extraction of deep feature vectors making use of current best practices in neural network design to establish a baseline for acoustic event classification. We convert chunks of audio signals into magnitude spectrograms and treat acoustic events as images. Our data set contains 20 different acoustic events which were collected in two different recording sessions combining human and environmental sounds. Our results demonstrate how efficient convolutional neural networks perform in the domain of acoustic event classification.en
dc.identifier.doi10.18420/in2017_217
dc.identifier.isbn978-3-88579-669-5
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-275
dc.subjectAcoustic Event Classification
dc.subjectAcoustic Event Detection
dc.subjectConvolutional Neural Networks
dc.titleAcoustic Event Classification Using Convolutional Neural Networksen
gi.citation.endPage2188
gi.citation.startPage2177
gi.conference.date25.-29. September 2017
gi.conference.locationChemnitz
gi.conference.sessiontitleDeep Learning in heterogenen Datenbeständen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B29-4.pdf
Größe:
467.18 KB
Format:
Adobe Portable Document Format