Logo des Repositoriums
 

Analysis of Minutiae Quality for Improved Workload Reduction in Fingerprint Identification

dc.contributor.authorDaile Osorio-Roig, Tim Rohwedder
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:25Z
dc.date.available2022-10-27T10:19:25Z
dc.date.issued2022
dc.description.abstractThe workload of biometric identification in large fingerprint databases poses a challenging problem. Efficient schemes for biometric workload reduction are a topic of ongoing research. Some of the state-of-the art approaches rely on triangles of minutia points generated by Delaunay triangulation, which are then used for indexing. In this paper, we investigate how quality estimation at the minutia level can improve the performance of such algorithms and hence the system workload. In order to reduce the number of spurious and missing minutiae, we analyse the impact of selecting minutiae points based on their qualities. This, in turn, can significantly distort the triangulation. In addition, we consider the usefulness of the average minutia quality as an additional criteria of the minutia triangles for indexing. Our results show that both strategies lead to a significant reduction in biometric workload compared to a baseline solution (i.e. exhaustive search) – down to 36% on average.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897018
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5477
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39686
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectComputational workload-reduction
dc.subjectindexing
dc.subjectfingerprint identification
dc.subjectminutiae quality
dc.subjectDelaunay triangulation
dc.titleAnalysis of Minutiae Quality for Improved Workload Reduction in Fingerprint Identificationen
dc.typeText/Conference Paper
gi.citation.endPage111
gi.citation.publisherPlaceBonn
gi.citation.startPage101
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
10-BIOSIG_2022_paper_64.pdf
Größe:
1.38 MB
Format:
Adobe Portable Document Format