Logo des Repositoriums
 

Computational Intelligence Techniques for Data Analysis

dc.contributor.authorBodyanskiy, Yevgeniy
dc.contributor.editorJantke, Klaus P.
dc.contributor.editorFähnrich, Klaus-Peter
dc.contributor.editorWittig, Wolfgang S.
dc.date.accessioned2019-08-27T08:15:04Z
dc.date.available2019-08-27T08:15:04Z
dc.date.issued2005
dc.description.abstractThe paper is a survey of the computational intelligence methods and their application to the data analysis problems. Neural networks, fuzzy sets, neuro-fuzzy systems, and genetic algorithms are considered. The advantages and disadvantages of the soft computing tools as well as specific issues of their application to data processing are analyzed, and the directions for their further improvement are outlined. New clustering algorithms that can operate under substantial uncertainty and cluster overlap are proposed.en
dc.identifier.isbn3-88579-401-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24880
dc.language.isoen
dc.publisherGesellschaft für Informatik e. V.
dc.relation.ispartofMarktplatz Internet: Von e-Learning bis e-Payment, 13. Leipziger Informatik-Tage (LIT 2005)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-71
dc.titleComputational Intelligence Techniques for Data Analysisen
dc.typeText/Conference Paper
gi.citation.endPage36
gi.citation.publisherPlaceBonn
gi.citation.startPage15
gi.conference.date21.-23. September 2005
gi.conference.locationLeipzig
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.72-1.pdf
Größe:
507.3 KB
Format:
Adobe Portable Document Format