Logo des Repositoriums
 

Confidence-driven communication of process mining on time series

dc.contributor.authorKoschmider, Agnes
dc.contributor.authorOppelt, Natascha
dc.contributor.authorHundsdörfer, Marie
dc.date.accessioned2022-09-09T12:40:19Z
dc.date.available2022-09-09T12:40:19Z
dc.date.issued2022
dc.description.abstractThe combination of machine learning techniques with process analytics like process mining might even significantly elevate novel insights into time series data collections. To efficiently analyze time series by process mining and to convey confidence into the analysis result, requires bridging challenges. The purpose of this article is to discuss these challenges and to present initial solutions.de
dc.identifier.doi10.1007/s00287-022-01470-3
dc.identifier.pissn1432-122X
dc.identifier.urihttp://dx.doi.org/10.1007/s00287-022-01470-3
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39369
dc.publisherSpringer
dc.relation.ispartofInformatik Spektrum: Vol. 45, No. 4
dc.relation.ispartofseriesInformatik Spektrum
dc.titleConfidence-driven communication of process mining on time seriesde
dc.typeText/Journal Article
gi.citation.endPage228
gi.citation.startPage223

Dateien