Logo des Repositoriums
 

HollerithEnergyML: A Prototype of a Machine Learning Energy Consumption Recommender System

dc.contributor.authorZanger, Michael
dc.contributor.authorSchulz, Alexander
dc.contributor.authorGrodmeier, Lukas
dc.contributor.authorAgaj, Dion
dc.contributor.authorSchindler, Rafael
dc.contributor.authorWeiss, Lukas
dc.contributor.authorMöhring, Michael
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:14Z
dc.date.available2024-10-21T18:24:14Z
dc.date.issued2024
dc.description.abstractEnergy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.en
dc.identifier.doi10.18420/inf2024_132
dc.identifier.isbn978-3-88579-746-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45106
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectAI
dc.subjectEnergy Consumption
dc.subjectML
dc.subjectRecommender
dc.titleHollerithEnergyML: A Prototype of a Machine Learning Energy Consumption Recommender Systemen
dc.typeText/Conference Paper
gi.citation.endPage1523
gi.citation.publisherPlaceBonn
gi.citation.startPage1519
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleData Analytics as a Service - Challenges and Opportunities (DAS2024)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Zanger_et_al_HollerithML.pdf
Größe:
336.92 KB
Format:
Adobe Portable Document Format