Logo des Repositoriums
 
Textdokument

Citcom – Citation Recommendation

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Citation recommendation aims to predict references based on a given text. In this paper, we focus on predicting references using small passages instead of a whole document. Besides using a search engine as baseline, we introduce two further more advanced approaches that are based on neural networks. The first one aims to learn an alignment between a passage encoder and reference embeddings while using a feature engineering approach including a simple feed forward network. The second model takes advantage of BERT, a state-of-the-art language representation model, to generate context-sensitive passage embeddings. The predictions of the second model are based on inter-passage similarities between the given text and indexed sentences, each associated with a set of references. For training and evaluation of our models, we prepare a large dataset consisting of English papers from various scientific disciplines.

Beschreibung

Meyer, Melina; Frey, Jenny; Laub, Tamino; Wrzalik, Marco; Krechel, Dirk (2021): Citcom – Citation Recommendation. INFORMATIK 2020. DOI: 10.18420/inf2020_82. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-701-2. pp. 907-914. 3rd Workshop on Smart Systems for Better Living Environments. Karlsruhe. 28. September - 2. Oktober 2020

Zitierform

Tags