Logo des Repositoriums
 

Citcom – Citation Recommendation

dc.contributor.authorMeyer, Melina
dc.contributor.authorFrey, Jenny
dc.contributor.authorLaub, Tamino
dc.contributor.authorWrzalik, Marco
dc.contributor.authorKrechel, Dirk
dc.contributor.editorReussner, Ralf H.
dc.contributor.editorKoziolek, Anne
dc.contributor.editorHeinrich, Robert
dc.date.accessioned2021-01-27T13:34:29Z
dc.date.available2021-01-27T13:34:29Z
dc.date.issued2021
dc.description.abstractCitation recommendation aims to predict references based on a given text. In this paper, we focus on predicting references using small passages instead of a whole document. Besides using a search engine as baseline, we introduce two further more advanced approaches that are based on neural networks. The first one aims to learn an alignment between a passage encoder and reference embeddings while using a feature engineering approach including a simple feed forward network. The second model takes advantage of BERT, a state-of-the-art language representation model, to generate context-sensitive passage embeddings. The predictions of the second model are based on inter-passage similarities between the given text and indexed sentences, each associated with a set of references. For training and evaluation of our models, we prepare a large dataset consisting of English papers from various scientific disciplines.en
dc.identifier.doi10.18420/inf2020_82
dc.identifier.isbn978-3-88579-701-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34795
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2020
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-307
dc.subjectcitation recommendation
dc.subjectnatural language processing
dc.subjectrepresentation learning
dc.titleCitcom – Citation Recommendationen
gi.citation.endPage914
gi.citation.startPage907
gi.conference.date28. September - 2. Oktober 2020
gi.conference.locationKarlsruhe
gi.conference.sessiontitle3rd Workshop on Smart Systems for Better Living Environments

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C20-5.pdf
Größe:
331.14 KB
Format:
Adobe Portable Document Format