Logo des Repositoriums
 

Graph-Based Time Token Recognition using Graph Neural Networks and Stanza Library

dc.contributor.authorDoms, Nicolas
dc.contributor.authorWoernle, LisaHahn
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorKranzlmüller, Dieter
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2023-12-15T09:22:23Z
dc.date.available2023-12-15T09:22:23Z
dc.date.issued2023
dc.description.abstractThis publication aims to explore the capabilities of the Stanza NLP library on one hand and Graph Neural Networks on the other hand by combining them in a time token classification task. After providing information on the German ”WikiWarsDE” dataset that is used for training, the evaluation dataset consisting of environmental documents as well as the transformations applied to both datasets to enhance the model, the setup of the Neural Network is presented. Afterwards, some early test results are evaluated before possible enhancements to the model are suggested.en
dc.identifier.doi10.18420/env2023-012
dc.identifier.isbn978-3-88579-736-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43332
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-342
dc.subjectGraph Neural Network
dc.subjectEntity Recognition
dc.subjectMachine Learning
dc.subjectArtificial Intelligence
dc.subjectChronological Classification of Environmental Documents
dc.titleGraph-Based Time Token Recognition using Graph Neural Networks and Stanza Libraryen
dc.typeText/Conference Paper
gi.citation.endPage142
gi.citation.publisherPlaceBonn
gi.citation.startPage135
gi.conference.date11.-13. Oktober 2023
gi.conference.locationGarching, Germany
gi.conference.reviewfull
gi.conference.sessiontitleInnovative Approaches and Solutions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI_Proceedings_342_Digital_Paper_12.pdf
Größe:
955.04 KB
Format:
Adobe Portable Document Format