Konferenzbeitrag
PALMA: Perfect alignments using large margin algorithms
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2006
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. We present a novel approach based on large margin learning that combines kernel based splice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm – called PALMA – tunes the parameters of the model such that the true alignment scores higher than all other alignments. In an experimental study on the alignments of mRNAs containing artificially generated micro-exons, we show that our algorithm drastically outperforms all other methods: It perfectly aligns all 4358 sequences on an hold-out set, while the best other method misaligns at least 90 of them. Moreover, our algorithm is very robust against noise in the query sequence: when deleting, inserting, or mutating up to 50% of the query sequence, it still aligns 95% of all sequences correctly, while other methods achieve less than 36% accuracy. For datasets, additional results and a stand-alone alignment tool see http://www.fml.mpg.de/raetsch/projects/palma.