Konferenzbeitrag
A Hybrid Approach for Efficient Unique Column Combination Discovery
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2017
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik, Bonn
Zusammenfassung
Unique column combinations (UCCs) are groups of attributes in relational datasets that contain no value-entry more than once. Hence, they indicate keys and serve data management tasks, such as schema normalization, data integration, and data cleansing. Because the unique column combinations of a particular dataset are usually unknown, UCC discovery algorithms have been proposed to find them. All previous such discovery algorithms are, however, inapplicable to datasets of typical real-world size, e.g., datasets with more than 50 attributes and a million records. We present the hybrid discovery algorithm H UCC, which uses the same discovery techniques as the recently proposed functional dependency discovery algorithm H FD: A hybrid combination of fast approximation techniques and e cient validation techniques. With it, the algorithm discovers all minimal unique column combinations in a given dataset. H UCC does not only outperform all existing approaches, it also scales to much larger datasets.