Konferenzbeitrag
Synthese im Kontext Parametrischer Markow-Modelle
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2021
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Markow-Modelle sind ein prominenter Formalismus, um Systeme mit unsicherem Verhalten zu modellieren und zu analysieren. Ein Markov-Modell umfasst (System)-Zustände mit wahrscheinlichkeitsbehafteten Transitionen. Eine typische Fragestellung für ein gegebenes Modell lautet: Beträgt die maximale Wahrscheinlichkeit, dass ein bestimmter Zustand erreicht wird, weniger als 0,01%? Um diese Frage zu beantworten, ist es wichtig, dass die Wahrscheinlichkeiten im Markow-Modell exakt bekannt sind. Dies ist leider oft unrealistisch. Um den potentiellen Ungenauigkeiten in diesen Wahrscheinlichkeiten gerecht zu werden, betrachten wir parametrische Modelle, in denen Wahrscheinlichkeiten durch symbolische (genauer: parametrische) Ausdrücke statt durch konkrete Werte dargestellt werden. Es ergeben sich einige natürliche Fragestellungen, zum Beispiel: Ist die maximale Wahrscheinlichkeit, dass ein bestimmter Zustand erreicht wird, weniger als 0,01% für jede Belegung der Parameter? In diesem Exposé betrachten wir diese und verwandte Fragestellungen. Die geschilderten Ergebnisse liefern neue Erkenntnisse zur theoretischen Komplexität sowie neue und effektive Methoden. Diese Methoden wurden implementiert und sie verbessern den aktuellen Stand der Technik beträchtlich. Die Implementierungen sind nun in der Lage, Markow-Modelle mit tausenden Parametern und Millionen Zustände zu analysieren.