Logo des Repositoriums
 

Vudenc: Vulnerability Detection with Deep Learning on a Natural Codebase for Python - Summary

dc.contributor.authorWartschinski, Laura
dc.contributor.authorNoller, Yannic
dc.contributor.authorVogel, Thomas
dc.contributor.authorKehrer, Timo
dc.contributor.authorGrunske, Lars
dc.contributor.editorEngels, Gregor
dc.contributor.editorHebig, Regina
dc.contributor.editorTichy, Matthias
dc.date.accessioned2023-01-18T13:38:52Z
dc.date.available2023-01-18T13:38:52Z
dc.date.issued2023
dc.description.abstractIn this extended abstract, we summarize our work on Vudenc published in the journal Information and Software Technology (IST) in 2022 [Wa22]. Vudenc uses deep learning to learn features of vulnerable code from a real-world Python codebase and a network of long-short-term memory cells (LSTM) is then used to detect vulnerabilities in code at a fine-grained level.en
dc.identifier.isbn978-3-88579-726-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40117
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-332
dc.subjectVulnerability detection
dc.subjectPython
dc.subjectDeep learning
dc.titleVudenc: Vulnerability Detection with Deep Learning on a Natural Codebase for Python - Summaryen
dc.typeText/Conference Paper
gi.citation.endPage126
gi.citation.publisherPlaceBonn
gi.citation.startPage125
gi.conference.date20.–24. Februar 2023
gi.conference.locationPaderborn
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper49.pdf
Größe:
165.61 KB
Format:
Adobe Portable Document Format