Auflistung HMD 51(4) - August 2014 - Big Data nach Schlagwort "Big Data"
1 - 5 von 5
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelBig Data – Eine Einführung(HMD Praxis der Wirtschaftsinformatik: Vol. 51, No. 4, 2014) Fasel, DanielVerfolgt man die Diskussionen in der europäischen Wirtschaft, erkennt man, dass der Begriff Big Data in der Praxis nicht klar definiert ist. Er ist zwar in aller Munde, doch nur wenige haben eine klare Antwort auf die Frage, was Big Data ist und wo es sich von klassischen Daten einer Unternehmung unterscheidet. Dieser Beitrag gibt eine Einführung in Big Data. Anhand von Volume, Velocity und Variety werden grundlegende Merkmale von Big Data erläutert. Um Big Data wertschöpfend in einer Firma einzusetzen braucht es neue Technologien und neue Fähigkeiten, damit mit solchen Daten besser umgegangen werden kann. In diesem Beitrag werden die Hauptgruppen und einige Vertreter von solchen neuen Technologien kurz erläutert. Letztlich werden die Chancen und Risiken von Big Data in Unternehmen betrachtet.
- ZeitschriftenartikelDatenschutz in Zeiten von Big Data(HMD Praxis der Wirtschaftsinformatik: Vol. 51, No. 4, 2014) Heuberger-Götsch, Olivier; Burkhalter, ThomasDer rasante technologische Fortschritt ermöglicht es sowohl Unternehmen als auch Behörden seit geraumer Zeit auf personenbezogene Daten in noch nie dagewesenem Umfang zurückzugreifen und auszuwerten. Das aktuelle Datenschutzgesetz bedarf einer Reform, damit auch in Zukunft die Rechte der Privatpersonen und die Interessen der Unternehmen und Behörden ausgewogen wahrgenommen werden können. Zur Diskussion steht namentlich die Überarbeitung der Datenschutzgrundsätze, wie der Einwilligung, der Erkennbarkeit oder der Zweckmäßigkeit der Datenbearbeitung sowie der Einführung neuer Rechtsfiguren, wie das Recht auf Vergessen, Produktestandards oder Sanktionsmöglichkeiten bei Datenmissbrauch.
- ZeitschriftenartikelDie neue Realität: Erweiterung des Data Warehouse um Hadoop, NoSQL & Co(HMD Praxis der Wirtschaftsinformatik: Vol. 51, No. 4, 2014) Müller, StefanDurch die immer starker wachsenden Datenberge stößt der klassische Data Warehouse-Ansatz an seine Grenzen, weil er in Punkto Schnelligkeit, Datenvolumen und Auswertungsmöglichkeiten nicht mehr mithalten kann. Neue Big Data-Technologien wie analytische Datenbanken, NoSQL-Datenbanken oder Hadoop versprechen Abhilfe, haben aber einige Nachteile: Während sich analytische Datenbanken nur unzureichend mit anderen Datenquellen integrieren lassen, reichen die Abfragesprachen von NoSQL-Datenbanken nicht an die Möglichkeiten von SQL heran. Die Einführung von Hadoop erfordert wiederum den aufwändigen Aufbau von Knowhow im Unternehmen. Durch eine geschickte Kombination des Data Warehouse-Konzepts mit modernen Big Data-Technologien lassen sich diese Schwierigkeiten überwinden: Die Data Marts, auf die analytische Datenbanken zugreifen, können aus dem Data Warehouse gespeist werden. Die Vorteile von NoSQL lassen sich in den Applikationsdatenbanken nutzen, während die Daten für die Analysen in das Data Warehouse geladen werden, wo die relationalen Datenbanken ihre Stärken ausspielen. Die Ergebnisse von Hadoop-Transaktionen schließlich lassen sich sehr gut in einem Data Warehouse oder in Data Marts ablegen, wo sie einfach über eine Data-Warehouse-Plattform ausgewertet werden können, während die Rohdaten weiterhin bei Hadoop verbleiben. Zudem unterstützt Hadoop auch Werkzeuge fur einen performanten SQL-Zugriff. Der Artikel beschreibt, wie aus altem Data Warehouse-Konzept und modernen Technologien die „neue Realität“ entsteht und illustriert dies an verschiedenen Einsatzszenarien.
- ZeitschriftenartikelEmpirische Ergebnisse zu Big Data(HMD Praxis der Wirtschaftsinformatik: Vol. 51, No. 4, 2014) Gluchowski, PeterDer vorliegende Beitrag nähert sich dem Themenkreis Big Data auf der Basis unterschiedlicher empirischer Untersuchungen, die das Ziel verfolgen, das Themenfeld weiter auszuleuchten. Entsprechende Umfrageergebnisse liegen inzwischen in großer Vielfalt vor, was sicherlich durch dem immer noch existierenden Aufklärungsbedarf geschuldet ist, und wurden vor allem von Analysten und Produktherstellern publiziert. Die vorliegende Untersuchung konzentriert sich auf unterschiedliche unabhängige Studien zum Thema Big Data und hebt zentrale gleichartige sowie abweichende Ergebnisse in kondensierter Form hervor.
- ZeitschriftenartikelSocial Media Monitoring mit Big Data Technologien(HMD Praxis der Wirtschaftsinformatik: Vol. 51, No. 4, 2014) König, Gerd; Gügi, ChristianDer Artikel beschreibt, wie mit Hilfe der Big Data Technologien Hadoop, HBase und Solr eine skalierbare Architektur zur Online Medienüberwachung definiert und realisiert wird. Ausgangspunkt ist das bereits vorhandene Medienüberwachungstool eines Kunden. Dessen Analyse und dabei entdeckte Schwachstellen führen zu einem Re-Design des kompletten Systems. Sowohl dieser Design-, als auch der darauf folgende Entwicklungsprozess werden durchgängig erläutert. Das Hadoop Framework, das den Kern der Lösung bildet, wird zusammen mit weiteren Werkzeugen aus dem Hadoop Ökosystem vorgestellt und die Implementierungen zur Erfüllung der einzelnen Teilanforderungen werden detailliert aufgezeigt. Die Systemarchitektur, technologische Innovationen, sowie die wichtigsten Softwareprodukte werden genannt. Das abschliessende Kapitel beschreibt die aus diesen Prozessen gewonnenen Learnings.