Konferenzbeitrag
Vergleich von Distanzen und Kernel für Klassifikatoren zur Optimierung der Annotation von Bildern
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2015
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Die stetig steigende Anzahl von Bildern erfordert Verfahren zur maschinellen Annotation. Um automatisch semantische Informationen aus den Bildern zu extrahieren, repräsentieren wir die Bilder durch numerische Vektoren, sogenannte BoW- Histogramme und klassifizieren diese auf vorgegebene Klassen. Als Klassifikatoren werden Nearest-Centroid (NC) und Support Vector Machine (SVM) eingesetzt. Auf der Caltech 101 Bilder-Datenbank liefert der SVM-Klassifikator mit dem empfohlenen RBF-Kernel bessere Ergebnisse als der NC-Klassifikator mit der Euklidischen Distanz. Wir vergleichen verschiedene Distanzfunktionen wie z.B. die Bhattacharyyaund Hellinger-Distanz und zeigen, wie sich die Mahalanobis-Distanz für eine Modifikation des NC-Klassifikators nutzen lässt. Nach einer Evaluation folgern wir, dass der NC-Klassifikator mit anderen Distanzfunktionen die SVM-Ergebnisse erreichen kann und eine Normierung der BoW-Histogramme sich ebenfalls positiv auswirkt. Außerdem zeigen wir, dass sich die Ergebnisse des SVM-Klassifikators signifikant durch den Einsatz des Chi-Quadratund Histogrammschnitt-Kernels verbessern können.