Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks
Abstract
The increasing number of network-based attacks like denial-of-service and ransomware have become a serious threat in nowadays digital infrastructures. Therefore, the monitoring of network communications and the classification of network packets is a critical process when protecting the environment. Modern techniques like deep learning aim to help the providers when detecting anomalies or attacks by learning details extracted from a network packet or a flow of packets. Most of these models are trained in networks without any kind of virtualisation, especially network virtualisation overlay environments are not investigated in detail. In this paper, we analyse the classification rate of a Convolutional Neural Network (CNN) faced with encapsulated packets. We evaluate this approach with a proof-of-concept based on a binary classification of a self-curated data-set.
- Citation
- BibTeX
Spiekermann, Da. & Keller, Jö.,
(2022).
Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks.
In:
Demmler, D., Krupka, D. & Federrath, H.
(Hrsg.),
INFORMATIK 2022.
Gesellschaft für Informatik, Bonn.
(S. 99-108).
DOI: 10.18420/inf2022_08
@inproceedings{mci/Spiekermann2022,
author = {Spiekermann,Daniel AND Keller,Jörg},
title = {Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 99-108 } ,
doi = { 10.18420/inf2022_08 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Spiekermann,Daniel AND Keller,Jörg},
title = {Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 99-108 } ,
doi = { 10.18420/inf2022_08 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
iwdf_08.pdf | 247.7Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_08
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2022_08
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Keywords
Collections
Related items
Showing items related by title, author, creator and subject.
-
Suchen & Finden im Knowledge Broker Network (Searching & Finding in the Knowledge Broker Network)
Löw, Robert; Bleimann, Udo; Rausch, Monika
17-24 -
Towards Networked and Structured VR ERA: Intuition Network of Excellence and Future Research Challenges
Amditis, Angelos; Bimpas, Matthaios; Blach, Roland
43-54