GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P326 - INFORMATIK 2022 - Informatik in den Naturwissenschaften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P326 - INFORMATIK 2022 - Informatik in den Naturwissenschaften
  • View Item

Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks

Author:
Spiekermann,Daniel [DBLP] ;
Keller,Jörg [DBLP]
Abstract
The increasing number of network-based attacks like denial-of-service and ransomware have become a serious threat in nowadays digital infrastructures. Therefore, the monitoring of network communications and the classification of network packets is a critical process when protecting the environment. Modern techniques like deep learning aim to help the providers when detecting anomalies or attacks by learning details extracted from a network packet or a flow of packets. Most of these models are trained in networks without any kind of virtualisation, especially network virtualisation overlay environments are not investigated in detail. In this paper, we analyse the classification rate of a Convolutional Neural Network (CNN) faced with encapsulated packets. We evaluate this approach with a proof-of-concept based on a binary classification of a self-curated data-set.
  • Citation
  • BibTeX
Spiekermann, Da. & Keller, Jö., (2022). Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks. In: Demmler, D., Krupka, D. & Federrath, H. (Hrsg.), INFORMATIK 2022. Gesellschaft für Informatik, Bonn. (S. 99-108). DOI: 10.18420/inf2022_08
@inproceedings{mci/Spiekermann2022,
author = {Spiekermann,Daniel AND Keller,Jörg},
title = {Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 99-108 } ,
doi = { 10.18420/inf2022_08 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
iwdf_08.pdf247.7Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_08

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/inf2022_08
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)

Keywords

  • virtual networks
  • network virtualisation overlay
  • deep learning
  • neural networks
  • network traffic classification
Collections
  • P326 - INFORMATIK 2022 - Informatik in den Naturwissenschaften [146]

Show full item record

Related items

Showing items related by title, author, creator and subject.

  • From Texts to Networks: Detecting and Managing the Impact of Methodological Choices for Extracting Network Data from Text Data 

    Diesner, Jana

    75-78
  • Suchen & Finden im Knowledge Broker Network (Searching & Finding in the Knowledge Broker Network) 

    Löw, Robert; Bleimann, Udo; Rausch, Monika

    17-24
  • Towards Networked and Structured VR ERA: Intuition Network of Excellence and Future Research Challenges 

    Amditis, Angelos; Bimpas, Matthaios; Blach, Roland

    43-54

About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.