GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item

Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models

Author:
Schlett, Torsten [DBLP] ;
Rathgeb, Christian [DBLP] ;
Tapia, Juan E. [DBLP] ;
Busch, Christoph [DBLP]
Abstract
Face image quality assessment algorithms attempt to estimate the utility of face images for biometric systems, typically face recognition, since the performance of these systems can be limited by the image quality. Hand-crafted quality score fusion has previously been examined for a variety of mostly factor-specific quality assessment algorithms. This paper instead examines score fusion for various recent “monolithic” quality assessment deep learning models. The evaluation methodology is based on Error-versus-Reject-Characteristic partial-Area-Under-Curve values, which are used to quantitatively rank quality assessment configurations in a face recognition context. Mean quality score fusion configurations were found to slightly improve performance on the TinyFace database, while the tested fusion types were ineffective on the LFW database.
  • Citation
  • BibTeX
Schlett, T., Rathgeb, C., Tapia, J. E. & Busch, C., (2022). Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models. In: Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A. (Hrsg.), BIOSIG 2022. Bonn: Gesellschaft für Informatik e.V.. (S. 301-308). DOI: 10.1109/BIOSIG55365.2022.9897032
@inproceedings{mci/Schlett2022,
author = {Schlett, Torsten AND Rathgeb, Christian AND Tapia, Juan E. AND Busch, Christoph},
title = {Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 301-308 } ,
doi = { 10.1109/BIOSIG55365.2022.9897032 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
32-BIOSIG_2022_paper_3.pdf873.0Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9897032

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1109/BIOSIG55365.2022.9897032
ISBN: 978-3-88579-723-4
ISSN: 1617-5499
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Biometrics
  • face image quality assessment
  • fusion
  • face recognition
Collections
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group [35]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.