Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models
Abstract
Face image quality assessment algorithms attempt to estimate the utility of face images for
biometric systems, typically face recognition, since the performance of these systems can be limited
by the image quality. Hand-crafted quality score fusion has previously been examined for a variety
of mostly factor-specific quality assessment algorithms. This paper instead examines score fusion for
various recent “monolithic” quality assessment deep learning models. The evaluation methodology
is based on Error-versus-Reject-Characteristic partial-Area-Under-Curve values, which are used to
quantitatively rank quality assessment configurations in a face recognition context. Mean quality
score fusion configurations were found to slightly improve performance on the TinyFace database,
while the tested fusion types were ineffective on the LFW database.
- Citation
- BibTeX
Schlett, T., Rathgeb, C., Tapia, J. E. & Busch, C.,
(2022).
Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models.
In:
Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A.
(Hrsg.),
BIOSIG 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 301-308).
DOI: 10.1109/BIOSIG55365.2022.9897032
@inproceedings{mci/Schlett2022,
author = {Schlett, Torsten AND Rathgeb, Christian AND Tapia, Juan E. AND Busch, Christoph},
title = {Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 301-308 } ,
doi = { 10.1109/BIOSIG55365.2022.9897032 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Schlett, Torsten AND Rathgeb, Christian AND Tapia, Juan E. AND Busch, Christoph},
title = {Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 301-308 } ,
doi = { 10.1109/BIOSIG55365.2022.9897032 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
32-BIOSIG_2022_paper_3.pdf | 873.0Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9897032
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-723-4
ISSN: 1617-5499
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Conference Paper