Logo des Repositoriums
 
Konferenzbeitrag

Vudenc: Vulnerability Detection with Deep Learning on a Natural Codebase for Python - Summary

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In this extended abstract, we summarize our work on Vudenc published in the journal Information and Software Technology (IST) in 2022 [Wa22]. Vudenc uses deep learning to learn features of vulnerable code from a real-world Python codebase and a network of long-short-term memory cells (LSTM) is then used to detect vulnerabilities in code at a fine-grained level.

Beschreibung

Wartschinski, Laura; Noller, Yannic; Vogel, Thomas; Kehrer, Timo; Grunske, Lars (2023): Vudenc: Vulnerability Detection with Deep Learning on a Natural Codebase for Python - Summary. Software Engineering 2023. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-726-5. pp. 125-126. Wissenschaftliches Hauptprogramm. Paderborn. 20.–24. Februar 2023

Zitierform

DOI

Tags