Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Towards Fine-Grained Sensor-Based Probabilistic Individual Air Pollution Exposure Prediction using Wind Information

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The estimation of pollutant exposure is highly dependent on the spatial and temporal resolution of the underlying model. This work presents a street-level Gaussian Process Regression model for urban air quality that uses a novel covariance kernel based on physical considerations to process wind information. This model can be driven by information from observations from low-cost sensor networks. We present the model, including the construction of the wind angle kernel, and discuss the inconclusive evaluation to date, the current challenges, and the way forward.

Beschreibung

Tremper, Paul; Riedel, Till (2023): Towards Fine-Grained Sensor-Based Probabilistic Individual Air Pollution Exposure Prediction using Wind Information. EnviroInfo 2023. DOI: 10.18420/env2023-020. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-736-4. pp. 219-229. Environmental Impact Assessment and Optimization. Garching, Germany. 11.-13. Oktober 2023

Zitierform

Tags