Logo des Repositoriums
 
Konferenzbeitrag

Code Smell Detection using Features from Version History

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Code smells are indicators of bad quality in software. There exist several detection techniques for smells, which mainly base on static properties of the source code. Those detectors usually show weak performance in detection of context-sensitive smells since static properties hardly capture information about relations in the code. To address this information gap, we propose a strategy to extract information about interdependencies from version history. We use static and the new historical features to identify code smells by a random forest. Experiments show that the introduced historical features improve detection of code smells that focus on interdependencies.

Beschreibung

Engeln, Ulrike (2024): Code Smell Detection using Features from Version History. SE 2024 - Companion. DOI: 10.18420/sw2024-ws_13. Gesellschaft für Informatik e.V.. pp. 173-174. SRC. Linz. 26.- 27. Februar

Zitierform

Tags