Logo des Repositoriums
 
Konferenzbeitrag

Code Smell Detection using Features from Version History

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Code smells are indicators for bad quality of source code. A well suited approach for the development of a smell detector are machine learning techniques that learn based on features, i.e., measurable properties of the software under investigation, e.g., code metrics. One major objective of our machine learning approach is to decide how to express information from the version history by features. we introduce a method to draw historical features that improve smell detection.

Beschreibung

Engeln, Ulrike (2023): Code Smell Detection using Features from Version History. Softwaretechnik-Trends Band 43, Heft 2. Gesellschaft für Informatik e.V.. ISSN: 0720-8928

Zitierform

DOI

Tags