Logo des Repositoriums
 
Konferenzbeitrag

Anomaly Detection in Supermarket Refrigeration Systems using Transformer Models: A Comparative Study

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This study investigates anomaly detection methods in supermarket refrigeration systems. A transformer-based model is introduced in this field and compared with LSTM autoencoders. The models are trained and evaluated using preprocessed refrigeration data, with parameters optimized for accuracy, recall, precision, and F1 score. Our findings aim to enhance system monitoring and maintenance strategies, ultimately improving reliability, energy efficiency, and operational excellence in supermarket refrigeration technology.

Beschreibung

Meyer, Melina; Gergeleit, Martin; Krechel, Dirk (2024): Anomaly Detection in Supermarket Refrigeration Systems using Transformer Models: A Comparative Study. INFORMATIK 2024. DOI: 10.18420/inf2024_119. Bonn: Gesellschaft für Informatik e.V.. ISSN: 2944-7682. PISSN: 1617-5468. EISSN: 2944-7682. ISBN: 978-3-88579-746-3. pp. 1359-1369. AI@WORK. Wiesbaden. 24.-26. September 2024

Zitierform

Tags