Logo des Repositoriums
 
Konferenzbeitrag

HollerithEnergyML: A Prototype of a Machine Learning Energy Consumption Recommender System

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.

Beschreibung

Zanger, Michael; Schulz, Alexander; Grodmeier, Lukas; Agaj, Dion; Schindler, Rafael; Weiss, Lukas; Möhring, Michael (2024): HollerithEnergyML: A Prototype of a Machine Learning Energy Consumption Recommender System. INFORMATIK 2024. DOI: 10.18420/inf2024_132. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-746-3. pp. 1519-1523. Data Analytics as a Service - Challenges and Opportunities (DAS2024). Wiesbaden. 24.-26. September 2024

Zitierform

Tags