Logo des Repositoriums
 

Developing a game AI for Murus Gallicus

dc.contributor.authorWilson, Philip Wilson
dc.contributor.authorSavinov, Andrej
dc.contributor.authorKadavanich, Annabella
dc.contributor.editorBecker, Michael
dc.date.accessioned2021-03-09T10:32:31Z
dc.date.available2021-03-09T10:32:31Z
dc.date.issued2020
dc.description.abstractThe development of game AIs has been a popular challenge in the last years. One of the best game agents, AlphaZero, was developed by DeepMind in 2017 and superseded by MuZero in 2019. Both agents are based on algorithms that perfectly learn to play any game within not even a day, given they are fed the game’s rules. The development of such game AIs does not necessarily require big computation centers like the ones Google has. In this work, we show how to develop and implement a Murus Gallicus game AI using mainly GOFAI (Good Old-Fashioned Artificial Intelligence) methods. We start with a comparison between different search tree algorithms, including MiniMax, NegaMax, NegaScout (principal variation search) and show how transposition tables can be used for optimization. Furthermore, we demonstrate the advantages of a dynamic value function and time management while searching for the best move. Lastly, we evaluate the application of Evolutionary Learning (EL), explaining how we trained specific parameters.en
dc.identifier.isbn978-3-88579-750-0
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35780
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSKILL 2020 - Studierendenkonferenz Informatik
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-16
dc.subjectArtificial Intelligence
dc.subjectGame AI
dc.subjectEvolutionary Learning
dc.titleDeveloping a game AI for Murus Gallicusen
dc.typeText/Conference Paper
gi.citation.endPage
gi.citation.publisherPlaceBonn
gi.citation.startPage89
gi.conference.date30.09/01.10.2020
gi.conference.sessiontitleGames

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
SKILL2020-07.pdf
Größe:
435.92 KB
Format:
Adobe Portable Document Format