Logo des Repositoriums
 

Applying Differential Privacy to Machine Learning: Challenges and Potentials

dc.contributor.authorBoenisch, Franziska
dc.contributor.editorSelhorst, Marcel
dc.contributor.editorLoebenberger, Daniel
dc.contributor.editorNüsken, Michael
dc.date.accessioned2019-12-02T13:06:03Z
dc.date.available2019-12-02T13:06:03Z
dc.date.issued2019
dc.identifier.doi10.18420/cdm-2019-31-26
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/30621
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V. / FG KRYPTO
dc.relation.ispartofcrypto day matters 31
dc.relation.ispartofseriescrypto day matters
dc.titleApplying Differential Privacy to Machine Learning: Challenges and Potentialsen
dc.typeText/Abstract
gi.citation.publisherPlaceBonn
gi.conference.date17.-18.10.2019
gi.conference.locationQualcomm, Berlin
gi.conference.sessiontitleKurzbeitrag

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
CryptoDayMatters31-26-Boenisch.pdf
Größe:
111.12 KB
Format:
Adobe Portable Document Format