Logo des Repositoriums
 
Konferenzbeitrag

Bestimmung von Datenunsicherheit in einem probabilistischen Datenstrommanagementsystem

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Für die kontinuierliche Verarbeitung von unsicherheitsbehafteten Daten in einem Datenstrommanagementsystem ist es notwendig das zugrunde liegende stochastische Modell der Daten zu kennen. Zu diesem Zweck existieren mehrere Ansätze, wie etwas das Erwartungswertmaximierungsverfahren oder die Kerndichteschätzung. In dieser Arbeit wird aufgezeigt, wie die genannten Verfahren in ein Datenstrommanagementsystem verwendet werden können, umso eine probabilistische Datenstromverarbeitung zu ermöglichen und wie sich die Bestimmung des stochastischen Modells auf die Latenz der Verarbeitung auswirkt. Zudem wird die Qualität der ermittelten stochastischen Modelle verglichen und aufgezeigt, welches Verfahren unter welchen Bedienungen bei der kontinuierlichen Verarbeitung von unsicherheitsbehafteten Daten am effektivsten ist.

Beschreibung

Kuka, Christian; Nicklas, Daniela (2015): Bestimmung von Datenunsicherheit in einem probabilistischen Datenstrommanagementsystem. Datenbanksysteme für Business, Technologie und Web (BTW 2015) - Workshopband. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-636-7. pp. 81-90. Hamburg. 2.-3. März 2015

Schlagwörter

Zitierform

DOI

Tags