Logo des Repositoriums
 

Enhancing business intelligence with unstructured data

dc.contributor.authorLang, Alexander
dc.contributor.authorMera Ortiz, Maria
dc.contributor.authorAbraham, Stefan
dc.contributor.editorFreytag, Johann-Christoph
dc.contributor.editorRuf, Thomas
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2019-02-20T10:28:13Z
dc.date.available2019-02-20T10:28:13Z
dc.date.issued2009
dc.description.abstractQuality early warning and proactive customer churn detection are two examples of applications that can benefit from insights gained from unstructured text data. The term "Unstructured Business Intelligence" describes methods and tools that enable data waren
dc.identifier.isbn978-3-88579-238-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20467
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme in Business, Technologie und Web (BTW) – 13. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-144
dc.titleEnhancing business intelligence with unstructured dataen
dc.typeText/Conference Paper
gi.citation.endPage485
gi.citation.publisherPlaceBonn
gi.citation.startPage469
gi.conference.date2.-6. März 2009
gi.conference.locationMünster
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
469.pdf
Größe:
1.2 MB
Format:
Adobe Portable Document Format