Logo des Repositoriums
 

Understanding Parameters of Deductive Verification: An Empirical Investigation of KeY

dc.contributor.authorKnüppel, Alexander
dc.contributor.authorThüm, Thomas
dc.contributor.authorPardylla, Carsten Immanuel
dc.contributor.authorSchaefer, Ina
dc.contributor.editorBecker, Steffen
dc.contributor.editorBogicevic, Ivan
dc.contributor.editorHerzwurm, Georg
dc.contributor.editorWagner, Stefan
dc.date.accessioned2019-03-14T11:49:22Z
dc.date.available2019-03-14T11:49:22Z
dc.date.issued2019
dc.description.abstractAs formal verification of software systems is a complex task comprising many algorithms and heuristics, modern theorem provers offer numerous parameters that are to be selected by a user to control how a piece of software is verified. Evidently, the number of parameters even increases with each new release. One challenge is that default parameters are often insufficient to close proofs automatically and are not optimal in terms of verification effort. The verification phase becomes hardly accessible for non-experts, who typically must follow a time-consuming trial-and-error strategy to choose the right parameters even for trivial pieces of software. To aid users of deductive verification, we apply machine learning techniques to empirically investigate which parameters and combinations thereof impair or improve provability and verification effort. We exemplify our procedure on the deductive verification system KeY 2.6.1 and specified extracts of OpenJDK, and formulate 53 hypotheses of which only three have been rejected. We identified parameters that represent a trade-off between high provability and low verification effort, enabling the possibility to prioritize the selection of a parameter for either direction. Our insights give tool builders a better understanding of their control parameters and constitute a stepping stone towards automated deductive verification and better applicability of verification tools for non-experts.en
dc.identifier.doi10.18420/se2019-51
dc.identifier.isbn978-3-88579-686-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20913
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering and Software Management 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-292
dc.subjectDeductive Verification
dc.subjectDesign by Contract
dc.subjectFormal Methods
dc.subjectTheorem Proving
dc.subjectKeY
dc.subjectControl Parameters
dc.subjectAutomated Reasoning
dc.titleUnderstanding Parameters of Deductive Verification: An Empirical Investigation of KeYen
dc.typeText/Conference Poster
gi.citation.endPage166
gi.citation.publisherPlaceBonn
gi.citation.startPage165
gi.conference.date18.-22. Februar 2019
gi.conference.locationStuttgart, Germany
gi.conference.sessiontitlePoster

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
51.pdf
Größe:
402.69 KB
Format:
Adobe Portable Document Format