Logo des Repositoriums
 

Der Einsatz von Neural Language Models für eine barrierefreie Verwaltungskommunikation: Anforderungen an die automatisierte Vereinfachung rechtlicher Informationstexte

dc.contributor.authorGille, Michael
dc.contributor.authorSchomacker, Thorben
dc.contributor.authorvon der Hülls, Jörg
dc.contributor.authorTropmann-Frick, Marina
dc.contributor.editorGunnar Auth
dc.contributor.editorTim Pidun
dc.date.accessioned2023-11-13T10:19:40Z
dc.date.available2023-11-13T10:19:40Z
dc.date.issued2023
dc.description.abstractMachine-learning-based text simplification can be used to meet legal obligations to provide comprehensibility-enhanced public service texts. The article examines the use of artificial intelligence for public administration communication in rule-based easy language. The authors outline essential technical, legal and normative requirements for the development and use of automated text simplification through neural language generation. As part of the Open-LS research project, a contribution is made to clarifying the possibilities and limits of the use of artificial intelligence systems for text simplification in public services.de;en
dc.identifier.doi10.18420/rvi2023-013
dc.identifier.isbn978-3-88579-735-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42620
dc.language.isode
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof6. Fachtagung Rechts- und Verwaltungsinformatik (RVI 2023)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-341
dc.subjectText simplification
dc.subjectTransformer
dc.subjectAI Regulation
dc.subjectLeichte Sprache
dc.subjectDIN SPEC 33429
dc.titleDer Einsatz von Neural Language Models für eine barrierefreie Verwaltungskommunikation: Anforderungen an die automatisierte Vereinfachung rechtlicher Informationstextede;en
dc.typeText/Conference Paper
gi.citation.endPage158
gi.citation.publisherPlaceBonn
gi.citation.startPage144
gi.conference.date26.-27. October 2023
gi.conference.locationDresden
gi.conference.reviewfull
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
11.pdf
Größe:
256.92 KB
Format:
Adobe Portable Document Format