Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Proof of concept for a new battery sorting method based on deep learning image classification

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Battery recycling requires efficient sorting based on chemical composition. Traditional methods like X-Ray or Electromagnetic Sensors lack automation, with X-Ray sorting 26 batteries and electromagnetic sorting only 6 batteries per second. We propose using deep learning image classification to detect battery manufacturer and product series. Our prototype includes a conveyor belt, webcam, ring light, and Nvidia Jetson AGX Orin. With a dataset of 9 battery series, we achieved over 99% validation accuracy using a pretrained MobileNetV2 model. The model can classify 50 images per second with limited hardware. This approach offers potential for automated sorting, significantly improving recycling throughput and efficiency. Further research should expand the dataset and explore applicability to other battery types, optimizing the model and hardware configuration.

Beschreibung

Blum, Fridolin; Wieczorek, Nils; Stelldinger, Peer (2023): Proof of concept for a new battery sorting method based on deep learning image classification. EnviroInfo 2023. DOI: 10.18420/env2023-003. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-736-4. pp. 35-44. EnvironmentalMonitoringandSensingTechnologies. Garching, Germany. 11.-13. Oktober 2023

Zitierform

Tags